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Fig.3 shows the relation §(f) for fixed values of p, for the cases of natural and forced
aging (the solid and dashed lines, respectively). The function §(f) increases with time t
and tends to a limiting value, which is larger, the larger the parameter p,

The author thanks N.Kh. Arutiunian and V.M. Aleksandrov for their interest.
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STEADY STATE BOUNDARY FLOWS IN THE LIGHT OF THE GENERALIZED KARMAN THEORY”

V.V. NOVOZHILOV

Results are given, based on the generalization in /1/ of the Karman theory
of turbulence, obtained within the last ten years. The advantages and
disadvantages of the model of turbulent flows used are analyzed and compari-
sons are made with other models.

1. Blasius's empirical formula of (19l1) represents the first significant success in
the applied theory of turbulence

A Re'/* = 0,318 (1.1)

The formula expresses the dependence of the coefficient of resistance on the Reynolds number
in steady state flow in a straight pipe of circular cross-section. However, the relationship
had no connection with the Reynolds equation and was therefore considered to represent an
achievement in hydraulics rather than hydrodynamics. In the 1920-s Prandtl proposed, while
developing the Reynolds' and Bussinesqg's ideas, the phenomenological theory of turbulent steady-
state flows, i.e. the mixing-length theory.

In fact, the problem was that of constructing a model of a non-linearly viscous fluid
the laminar flow of which would be identical (in velocity profiles and stress distribution)
with the averaged turbulent flow (with analogous boundary conditions). Prandtl's idea was
complemented by Karman who put forward the idea of the selfsimilarity of steady~-state turbul-
ent flows. As a result a solution was obtained for the averaged turbulent flow in a straight
pipe of circular cross-section, as well as results for the velooity profiles, and the relation
A =7 (Re), which agreed well with experimental data. The latter relation was practically
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identical with Blasius' formula (1.1} in the range (2.10° < Re < 2-10%) of moderate values of the
Reynolds number,
While trying to explain this fact, Karman found that the power formulas
ARe™" = 4, = const 1.2)
could be obtained provided that we assumed that the averaged flow velocity profile u{y is given
by the expression

u y \¥ {—n
—ﬁrn-_—;(-;-o-) ,ic:z'm— (1.3)

where ro is the pipe radius, U, is the maximum averaged velocity, and y is the distance from
the pipe wall. It was also found that within the range of the values of Re in which Blasius'
formula (obtained from (1.2) at n =¥, 4, = 0,316), holds, the velocity profile (1.3) is fairly
close to the universal logarithmic profile following from the mixing-length theory.

Usually the arguments used by Karman in deriving the power profile (1.3) are not quite
regarded as being the derivation of this profile from (1.2). However, in fact XKarman has only
shown that (1.3) does not contradict (1.2). But this applied to any other velocity profile
asymptotically close to {1.3) as y— 0, It is essential that a class of flows for which a re-
lation of the type (1.2) holds {over a certain, fairly large range of values of the Reynolds
number), is much greater than the class of flows for which the averaged velocity is approximat-
ed by the power law (1.3).

Formulas (1.2) can be successfully used to interpret experiments for numerous steady-state
turbulent flows. These include, in particular, the selfsimilar plane turbulent boundary
layers with positive and negative pressure gradients /1/, flows between two coaxial rotating
cylinders /2,3/, steady flow in a curved channel /4/ and certain magnetohydrodynamic flows /5/.
For all these flows the velocity profiles cannot be represented in the form of a power rela-
tion of the type (l.3).

In this connection the following problem naturally arises: to find a closure of the
Reynolds equations, i.e. a relation connecting the Reynolds stresses with the mean velocity
derivatives, which will lead to relations of the type (1.2) connecting the resistance coeffic~-
ient with the Reynolds number. Such a result would be equivalent to deriving Blasius' formula
from the Reynolds equations, i.e. to converting it from an empirical to a phenomenologigal
type relationship.

2. This method of formulating the problem places it in the initial period of theoretical
investigation of the turbulence. Its solution however was delayed for almost 50 years. It
is given by the following formula for the turbulent viscosity w;

Ve ou ’_ Fu [2
T—x"T",Tsl_a;_l v,Tle (2.1)

where v is the molecular viscosity, and n and x, are dimensionless physical constants.

Expression (2.1) includes, as two special cases, the formulas for a linearly viscous fluid
m=mm=ﬂaﬁfutmxumnmmumtﬂmwnyh=Lm=mm.thutmlmKMgmms
Eg. (2.1) does not, of course, contribute anything new. The intermediate values 0<n<gt how-
ever yield interesting and non-trivial results. In this case it is found to be possible to
impose on the solution not only the Karman condition au/dy-— oo, but also the condition of ad~-
hesion u =0, obviating in this manner the need for a viscous sublayer, In the case of one-
dimensional and selfsimilar problems the use of (2.1) leads to an expression of the form (2.1)
connecting the coefficients of resistance with the Reynolds numbers. In this case, however,
the velocity profiles show no power type dependence and cannot be described by formulas of the
type (1.3) except in the single special case of a flow at a flat wall under the action of a
constant tangential force. In all the remaining cases the velocity profiles are more complicat-
ed and approach (1.3) . asymptotically only in the immediate vicinity of the wall.

3. Let us note some basic properties of the theory following from formula (2.1). At
first sight it can be used in cases when the velocity profiles of the averaged flow have points
of inflection (e.g. in Couette flow). Indeed, at the point of inflection #u/ay®=0, therefore
according to (2.1) the turbulent viscosity at this point ought to tend to infinity, which
clearly contradicts reality. The contradiction can be overcome if we assume that the profile
curvature at the point of inflection does not pass through zero continuously, but suffers a
finite discontinuity #%/gy* =za there. Then, according to (2.1) the turbulent viscosity at
the point of inflection will not only be finite, but also continucus as reguired,

Solutions of numerous specific problems /3/ show that the velocity profiles and coeffic-
ients of resistance obtained under these assumptions agree well with experimental data without
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the need to alter the experimental constants n and %, (determined earlier, once and for always
from experimental investigations of flows in pipes).

The latter support the assumption adopted, although some workers regard it as an arti-
ficial case without any physical basis. However, if we take into account the fact that any
steady state flow with a point of inflection in its wvelocity profile is formed as a result
of the merging of two boundary layers (or streams), then the appearance and retention of a
weak singularity in the form of a discontinuity in the curvature of its velocity profile,
along their lines of contact, is physically justified, and this is confirmed by numerous
comparisons of the computational and experimental data.

Note that in solving within the framework of the mixing-length theory, turbulent £flows
with inflection in the velocity profiles, it is usually necessary to make special assumptions
of one sort or another regarding the length of the mixing path (see e.g. /6,7/) and to intro-
duce new empirical constants. The undoubted advantage of this method of solving such flows
lies in its uniformity, i.e. in preserving for all problems the same initial formulas and the
same empirical constants derived from the Nikuradze experiments /1/.

The points at which the curve of the tangential stresses changes its sign are, according
to the theory, angular points for the velocity profiles. Profiles containing angular points
are not new in the theory of turbulence. For example, the mixing-length theory in its class-
ical form, when applied to flow in a straight pipe, leads to velocity profiles which are some-
what peaked on the pipe axis. It should be stressed that a tendency to such peaking can be
observed on all experimental profiles obtained for the flows in pipes by Nikuradze and others.
The peaking can be observed on the graph itself, and was called, in the hydraulics at the be-
ginning of this century, a "D'Arcy cap". We recall that the so-called first Prandtl Theory
for streams and wakes leads to pointed profiles. All this is also present in the generalized
Karman theory (2.1). 1In particular, the theory of selfsimilar plane boundary layers follow-
ing from it leads to the appearance of corner points at the free boundary of the layer, i.e.
the averaged velocity does not couple smoothly with the velocity of the potential flow /1/.
Perusal of the voluminous atlas of experimental data on velocity profiles in boundary layers
given in the second volume of the proceedings of the Stanford conference /8/ confirms this.
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Now is the time to mention that in discussing the paper by A.M. Kolmogorov /9/, L.D.
Landau showed that “"when dealing with the equations of turbulent motion, we must always take
into account the fact that the presence of vorticity in the turbulent stream is restricted
by the finite size of the space; qualitatively correct equations must lead to such a distribu-
tion of the vortices". The Landau condition means basically that a sharp boundary separating
the regions of potential and turbulent flows is necessary. This is satisfied, in particular,
by Prandtl's first theory of streams and wakes, but not by his second theory. The genexal-
ized Karman theory (2.1) always leads to a sharp separation of the regions of potential and
turbulent flows, thus satisfying the Landau postulate.

In fact that the proposed theory leads to the appearance of corner points on the veloc~-
ity profiles at points where the tangential stresses change sign, conforms with the theory.

As we know, the fact that the tangential Reynolds stresses become zero does not imply that
there is no variation in the velocity. Turbulent motion occurs at such points with sufficient
intensity and has an alernating character. This means that the points cannot always be de-
tected experimentally and the pattern often appears diffuse /10/. However, a large volgme of
experimental data /8/ exists which indicate that the corner points on the velocity profiles

of the turbulent flows are an objective fact. This is clearly seen in Fig.l, which shows the
results of experiments id 2100 (boundary layer flow; U,is the velocity at the outer boundary
of the boundary layer, and 8 denotes its thickness).
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4., Formula (2.1) for turbulent viscosity contains the molecular viscosity v in explicit
form. This sometimes gives rise to objections, since the formulas for ¥, obtained earlier
did not usually contain the molecular viscosity, arguing that trubulent mixing away from the
wall (without a viscous sublayer) must obey the laws of flow.of a perfect fluid. Neverthe-
less, the experimental determination of v, with help of the formula

—<u'vy = v duldy 4.1)

where <w'v> and du/dy. are measured, shows that v, depends essentially on the Reynolds number
and hence on .

In the classical theory of turbulence the contradiction is overcome by introducing the
concept of a viscous sublayer the thickness of which is given by the empirical formula

vehiv = 11 (4.2)

where v, is the dynamic velocity. The condition that the velocity is continuous on the bound-
ary between the viscous sublayer and the region of turbulent flow, implies that the turbulent
viscosity depends, after all, in an indirect manner, on the molecular viscosity.

In the generalized Karman theory (n= 1) it becomes possible to satisfy the condition of
adhesion of fluid at the boundary without resorting to the concept of a viscous sublayer.
This is equivalent to neglecting the thickness of this sublayer. But then we must include v
in the formula for the turbulent viscosity, which is indeed done in (2.1), We shall use the
classical problem of turbulent flow in pipes to show that such an approach is admissible and
yields correct results, by considering and comparing various formulas.

Using the mixing-length theory and putting ! =04r,(i — 1), where u =r/r,, r, is the pipe
radius, we can obtain .

T

V=g =04 -0 4.3)

while {2.1) with n=1,%,=0.16 (which corresponds to the Karman theory), yields the expression
V¥ =08(1—1v")ny (4.4)
The same formula (2.1) but with » =%, %, =053(1]), gives

2,66

v =7 =17 (4.5)

Nikuradze determined the function w2*{n) independently of any hypotheses regarding the
value of the mixing length, using the formula

v:=—wz=§§vvi=% (4.6)
where the pressure gradient g and du/dy were determined experimentally.

Fig.2 shows curves of wv*={ (1 —v) constructed using {(4.3) (curve 1) and (4.4) (curve 2);
curves 3 and 4 correspond to the Reynolds number Re=3.10* and Re = 10* respectively. We
see that the' classical formulas (4.3) and- (4.4) vield substantially higher values of wv,, and
(4.4), following from the Karman theory, gives slightly better results.- But even the latter
exceeds the experimental values by 50% at Re=3.10?and by 27% at Re=10'. The results obtain-
ed for v* from the proposed formula (3.3) are higher than the experimental data by 38% at
HRe =3-10° and lower by 13% at Re=10*. It should be noted however that the values n o= 8y,
%, = 0.53 of the constants are intended only to be used for calculations falling within the
"Blasius” range of Reynolds numbers, and at Re = 10°* Egq. (4.5) yields a curve for v*, which
is practically identical with the experimental curve and with that given by the formula

V" = (0,44 — 0.08n? — 0.06n% 1" 4.7

which is obtained when the empirical Prandtl formula based on the Nikuradze experiments is
used for the mixing length. The dependence of the constants n and =%, used in the theory
(2,1) on the Reynolds numbers, has already been discussed and pairs of their values for
various ranges of Re are given in /1/.

5. The above comparison is fairly typical and shows that molecular viscosity v, can be
brought in indirectly and yields results no worse than those obtained by introducing v into
v, through the boundary condition, as has been done up to now. At the same time, the scope
for solving turbulent flows is increased considerably. The proposed theory was successfully
applied in /1-5/ to various problems mentioned in Sect.l.

The results obtained in 1978 for Couette flow with (and without) a pressure gradient are
of interest, since the problem can be solved within the framework of the proposed theory in
quadratures. Its solutions obtained within the framework of traditional representations /6,
7,11/ were derived by choosing specially the formula for the mixing path and for the physical
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constants appearing in it, i.e, the formula was tailored to the problem in question. Mean-
while, using the generalized Xarmsn theory (2.1} the problem can be solved in closed form
without altering the initial formula and the constants appearing in it.

A new solution to the Hartman problem /5/ also did not require any changes in (2.1),
nor in the values of the constants. Its transpired that a transverse magnetic field affects
the flow only in terms of its averaged characteristics. The laws governing turbulent mixing
remain the same as for non-electrically conducting liquids. Until now the theory of turbul-
ent magnetohydrodynamic flows was regarded as an independent branch of the theory of turbul-
ence, requiring a revision of the formulas for turbulent viscosity (see e.g. /12/).

Spacial attention must be given to the results obtained for curvilinear flows. Since
the time of Prandtl’'s work /13/ it has bsen known that the computations must take into account

the substantial influence of centrifugal forces on turbulent mixing. This problem however
has not been tackled thggggt;gglly; The ﬁnITnufnn generalization of the thecry (2.1} to em

...... e TASOXY (k.1 } L0 em-

brace curvilinear flows described in a polar coo:dinate system, was proposed in /3/:

V.

= RO T (5.1)
T ol ) M-S

Here () is the angular velocityof the liguid, f{(Ri) is a correction coefficient allow-
ing for the effect of centrifugal forces on the turbulent mixing, and Ri is the Richardson
gradient number known in the thaeory of statified turbulent flows, and used in the form general-
ized to curvilinear Bradshaw flows /14/. The analogy betwsen statified and curvilinear
turbulent flows was noted in /15/.

Analyzing the large amount of experimental data on turbulent flows between rotating
eylinders, we obtained in /3/ the sxpression

£ (Ri) = 1 — 1,1Ri""* (5.2)

valid for the Blasius range of Re for which na e ¥, s, = 0.53. The expression for the correction
factor j{Ri) was then successfully used to compute the flow in a curved channel /4/. Formulas
were obtained for the coefficient of resistance and for the coordinate of the maximum of the
velocity profile, which were in good agreement with experimental data. Formulas (5.1) and
(5.2} open up the prospects of computing plane turbulent boundary layers on curvilinear bound-
aries, and increase the accuracy of the determination of their points of separation.

We note that in computing curvilinear turbulent flows the number of empirical constants
is increased by two. Thus we have, in addition to » =%, x, = 0.53, another two constants in
(5.2): = {4, a = ¥, This means that the thecry has reached its critical level of four empirical
constants, beyond which every theory transforms, according to Landau, into a procass of ad-
justing the formulas to fit the experimental data.

6. Formala {(2.1) was also used to computa plane boundary layers with positive and nega-
- =17 2
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periments with boundary layers described in /8/. The outcome of this exercise is described
in detail in /1/, so we shall just mention here the most important results of these tests.

The best agreement with experiment {with regard to both velocity profiles and coeffic-
ients of resistance)} was obtained for the following values of the physical constants a=1%,,
%y = 056 and not for a =% %, = 0.53, as might have been expected bearing in mind that it was
the latter set of the valueg of the constants that gave best results in the remaining special
cages.

This can obviocusly be explained not only by the fact that the boundary layers studied in
/1/ were charactarized by the relatively low Reynolds numbers, but alsc by the fact that ex-
periments involving boundary layers with positive pressurs gradients are usually prons to
error because of the difficulty of maintaining the plane character of the flow. This is
particularly true for layers which have become datached. The best results were obtained when
computing the equilibrium boundary layers for which the theory gave excellent agreement with
experiment, at the same time confirming the sxperimentally found non~uniqueness of the sclu-
tion of the problem. Using these results, we have succeeded in generalizing the Buri equa-
tion by converting it to a Riccati-type equation with the coefficient determined not empiric-
ally, but from the theory {(2.1).

7. All the problems listed here are those of the theory of boundary layer turbulence.
The use of formula {2.1) to solve free turbulence problems is not inadmissible, but a problem
arises here, still not fuily solved, namely, what condition at the Ifree boundary should re-
place the Karman condition awdy—oe, which holds only on the walls. In this case an addit-
ional condition must be formulated {(despite specifying the velocity at the free boundary),

since (2.1) contains not only the first, but also the second derivative of the velocity, and
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this increases the order of the differential equation of flow by one (as compared with the
version of the mixing-length theory in Prandtl form). At first glance it appears that the
relation au/dy =0, which presupposes a smooth variation in the velocity at the boundary between
the potential and turbulent flow can be used as the additional condition. However, the
structure of formulas (2.1) does not permit this. We recall that the theory is constructed
in a manner which results in a sharp separation between potential and turbulent flow, and
this is precisely its merit.

In spite of the lack of clarity noted above, the computations of streams and wakes using

the generalized Karman theory have not been without success. In every special case however,
varicus possible assumptions of one sort or another have had to be made (e.g. specifying a

VaAriQGus RPRSSAL.LT AEBSENPLiLRs L s QX 0TAaY

point of inflection on the velocity profile and assuming that this point cozncides with the

maximum of the curve tangential stresses). A remote wake was computed /14/ in this spirit,
Sl da weoa mlemaae delemaes dam s 3 mas T o +hat the +urhulent viscosi 4’(1 curve has 2 form intermediate
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between the curves produced using the first and second Prandtl theory, which agreed better
with experiment.

Moreover, it was found possible, while carrying out the computations for »=1 (correspond-
ing to the Karman theory), to compute the Schlichting constant f from the given value of the
Karman constant wx, = 0.46, thus proving that the physical constants used in the theory of bound-
ary layer turbulence can also be used to solve the free turbulent flows. The most important
aspect of this is, that up till now the constants of boundary layer turbulence and free turbul-
ence were regarded as independent. If n=3% and n=13%, are the "working” values of the
exponent in (2.1) for computing boundary layer flows, then for free turbulence = 1, #% = 0,16
(thus passing to the classical form of the Karman equation), or n=09~0.95. should be used.
This follows from the fact that the energy dissipation is much slower in free turbulent flows
than in boundary layer flows, and the dependence of the turbulent viscosity on the molecular
viscosity must be less. However, the fact that it can be taken into account at all (within
the framework of the generalized Karman theory) is of some interest.

8. The generalized Karman theory described above belongs, by virtue of its applicabil-
ity, to the "coarse" versions of the theory of turbulence. It limits itself to censidering
only steady-state flow, collecting only the most important features and neglecting certain
second-order phenomena. Its undoubted shortcoming lies in the fact that solving any particular
problem with its help requires a priori discussion of the range of Reynolds numbers withinwhich
the solution can be used, even though these ranges are usually fairly wide.

Its merit is its relative simplicity, which produces results easy to interpret for such
complex problems as the flow between two rotating cylinders, plane equilibrium boundary layers,
flows in curved channels, and Hartman flow. Most of the work on turbulence dealing with
specific types of flow (including those mentioned above) is characterized by a large degree
of arbitrariness in choosing the formulas for the mixing length and the constants appearing
in them. None of this occurs in the proposed method which at all times keeps the same pairs
of constants, namely n =%, %, = 0,53, and n =12/, %, = 0,56 for flows with relatively low Reynolds
numbers. The same values of the empirical constants are retained in the case of curvilinear
flows, but are supplemented by another two constants (introduced to account for a new physical
factor, e.g. the centrifugal forces which substantially affect turbulent mixing).

Thus the formulas for turbulent viscosity (2.1) embrace a wide class of problems of the
theory of turbulence, while maintaining stable empirical constants and a moderate number of
them. This must be regarded as a reflection of the fact that the theory in question has a
deep physical basis and will, undoubtedly in time be derived from more gemeral relations and
ideas. Even now we can see that the basis of the theory is the hypothesis of selfsimilarity

of turbulent flows in a form conforming to the fact that the relation between the coefficients
of resigstance and Reynolds numbers, in the form of Blasius' formula, holds true for Jo——
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steady-state turbulent flows in ranges of values of the Reynolds numbers of practical interest.
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ON THE CONDITIONS FOR THE ONSET OF MOTION
OF TWO COLLINEAR DISLOCATION DISCONTINUITIES"

A.S. BYKOVISEV

The conditions under which the motion begins of two collinear disiocatiomal
Volterra-type discontinuities, initally specified on a single straight line
in a homogenecusly isotropic elastic medium, is studied. The theory of
invariant D -~integrals /1/ is used to write the criteria defining the
beginning and direction of motion of either end of the discontinuity. The

limitineg straggsas avre deteymined and the subgemuent hehaviour of the whole
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system is investigated.

Let two generalized dislocational discontinuities of unequal length and constant sudden
change in displacement b (b, b, by) = const be distributed along a single straight line.We intro-
duce the rectangular Cartesian coordinate system in such a manner that the Oz -axis coincides
with the line on which the discontinuities lie, and denote by I, —h, 4, 4 the abscissas
of the ends of the digcontinuity. The problem is assumed to be plane. We will determine the
critical loads which must be applied to the body in order for at least one end of the dis-
continuity to begin to move. The problem in question is an analog of the problem discussed in-
/2/ (on the equilibrium of two collinear cracks) for dislocation discontinuities.

Let us dencte by u,, uy, u, the components of the displacement vector along the =, 7,z axes
respectively, and by 4, Sy, s Gge Oz O the stress tensor components. We also denote the
get of internal po:.nts of the segments (—l, —l) and (& l)of the Oz-axis by L, and the set of
points of the Or-axis outside these segments by M. The boundary conditions of the problenm

have the form
av e form

[wj=bonk, uj=0on M 1)

Problem (1) can be written in the form of the sum of the symmetric, skew-symmetric and
anti-plane problems, by expanding the vector b(b, b, bs) in three terms by(4,0, 0). by (0, 55, 0), by
{0, 0, by). The boundary conditions will have the form (2), (3) and (4) for the skew-symmetric,
symmetric and antiplane problems respectively

Uy =Ygy, Gy =00ONnL; ux=0, oy=0onMH
ty =ty by, Oy =0 0nL; uy=0, oy=00nA

(2)
(3}
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