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Fig.3 shows the relation El(t) for fixed values of C, for the cases of natural and forced 
aging (the solid and dashed lines, respectively). The function O(t) increases with time t 
and tends to a limiting value, which is larger, the larger the parameter pX 

The author thanks N.Kh. Arutiunian and V.M. Aleksandrov for their interest. 
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STEADY STATE BOMDARY FLOWS IN THE LIGHT OF THE GEHERALIZED KARMAN THEORY* 

V.V. NOVOZBILOV 

Results are given, based on the generalization in /1/ of the Karman theory 
of turbulence, obtained within the last ten years, The advantages and 

disadvantages of the model of turbulent flows used are analyzed and compari- 
sons are made with other models. 

1. Blasius's empirical formula of (1911) represents the first significant success in 
the applied theory of turbulence 

li R0'I' = 0,316 (1.1) 

The formula expresses the dependence of the coefficient of resistance on the Reynolds number 
in steady state flow in a straight pipe of circular cross-section. However, the relationship 

had no connection with the Reynolds equation and was therefore considered to represent an 
achievement in hydraulics rather than hydrodynamics. In the 1920-s Prandtl proposed, while 

developing the Reynolds' and Bussinesq's ideas, the phenomenological theory of turbulentsteady- 
state flows, i.e. the mixing-length theory. 

In fact, the problem was that of constructing a model of a non-linearly viscous fluid 
the laminar flow of which would be identical (in velocity profiles and stress distribution) 
with the averaged turbulent flow (with analogous boundary conditions). Prandtl's idea was 

complemented by Karman who put forward the idea of the selfsimilarity of steady-state turbul- 
ent flows. As a result a solution was obtained for the averaged turbulent flow in a straight 
pipe of circular cross-sectioxl, as well as results for the velooity profiles, and the relation 
h= f(Re), which agreed well with experimental data. The latter relation was practically 

*Prikl.Matem.Mekhan.. Vo1.47,No.4,pp.694-700,1983 



identical with Blasius' formula (1.1) in the range (2.10"<Re<S.i@) of moderate values of the 
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Reynolds number. 
While trying 

could be obtained 
by the expression 

to explain this fact, Earman found that the power formulas 

J.&'-n =A,=const (1.2) 

provided that we assumed that the averaged flow velocity profile u(p) is given 

(1.31 

where To is the pipe radius, u,,, is the maximum averaged velocity, and y is the distance from 

the pipe wall. It was also found that within the range of the values of Ra in which Blasius' 
formula (obtained from (1.2) at n=Vd,A,, ==0,316), holds, the velocity profile (1.3) is fairly 
close to the universal logarithmic profile following from the mixing-length theory. 

Usually the arguments used by Earman in deriving the power profile (1.3) are not quite 
regarded as being the derivation of this profile from (1.2). However, in fact Earman has only 
shown that (1.3) does not contradict (1.2). But this applied to any other velocity profile 
asymptotically close to (1.3) as 14 d It is essential that a class of flows for which a re- 
lation of the type (1.2) holds (over a certain, fairly large range of values of the Reynolds 
number), is much greater than the class of flows for which the averaged velocity is approximat- 
ed by the power law (1.3). 

Formulas (1.2) can be successfully used to interpret experiments for numerous steady-state 
turbulent flows. These include, in particular, the selfsimilar plane turbulent boundary 
layers with positive and negative pressure gradients /l/, flows between two coaxial rotating 
cylinders /2,3/, steady flow in a curved channel /4/ and certain magnetohydrodynamic flows /5/. 
For all these flows the velocity profiles cannot be represented in the form of a power rela- 
tion of the type (1.3). 

In this connection the following problem naturally arises: to find a closure of the 
Reynolds equations, i.e. a relation connecting the Reynolds stresses with the mean velocity 
derivatives, which will lead to relations of the type (1.2) connecting the resistance coeffic- 
ient with the Reynolds number. Such a result would be equivalent to deriving Blssius' formula 
from the Reynolds equations, i.e. to converting it from an empirical to a phenomenologioal 
type relationship. 

2. This method of formulating the problem places it in the initial period of theoretical 
investigation of the turbulence. Its solution however was delayed 
is given by the following formula for the turbulent viscosity V; 

for almost 50 years. It 

Y 
-- ’ -IQ”“, T 
Y 

(2.1) 

where v is the molecular viscosity, and n and h are dimensionless 
Expression (2.1) includes, as two special cases, the formulas 

(n = 0, x, = i) and for the Karman turbulent viscosity (n- i,xl = O,(6). 

physical constants. 
for a linearly viscous fluid 
In these two limiting cases 

Eq.(2.1) does not, of course, contribute anything new. The intermediate values O<n<i how- 
ever yield interesting and non-trivial results. In this case it is found to be possible to 
impose on the solution not only the Karman condition a&~-m, but also the condition of ad- 
hesion u =O, obviating in this manner the need for a viscous sublayer. In the case of one- 
dimensional and selfsimilar problems the use of (2.1) leads to an expression of the form (2.1) 
connecting the coefficients of resistance with the Reynolds numbers. In this case, however, 
the velocity profiles show no power type dependence and cannot be described by formulas of the 
type (1.31 except in the single special case of a flow at a flat wall under the action of a 
constant tangential force. In all the remaining cases the velocity profiles are more complicat- 
ed and approach (1.3) .asymptotically only in the immediate vicinity of the wall. 

3. Let us note same basic properties of the theory following from formula (2.1). At 
first sight it can be used in cases when the velocity profiles of the averaged flow have points 
of inflection (e.g. in Couette flow). Indeed, at the point of inflection 8%&'1.0, therefore 
according to (2.1) the turbulent viscosity at this point ought to tend to infinity, which 
clearly contradicts reality. The contradiction can be overcome if we assume that the profile 
curvature at the point of inflection does not pass through zero continuously, but suffers a 
finite discontinuity sdalap=fa there. Then, according to (2.1) the turbulent viscosity at 
the point of inflection will not only be finite, hut also continuous as required. 

Solutions of numerous specific problems /3/ show that the velocity profiles and coeffic- 
ients of resistance obtained under these assumptions agree well with experimental data without 
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the need to alter the experimental constants n and x, (determined earlier, once and for always 
from experimental investigations of flows in pipes). 

The latter support the assumption adopted, although some workers regard it as an arti- 
ficial case without any physical basis. However, if we take into account the fact that any 
steady state flow with a point of inflection in its velocity profile is formed as a result 
of the merging of two boundary layers (or streems), then the appearance and retention of a 
weak singularity in the form of a discontinuity in the curvature of its velocity profile, 
along their lines of contact , is physically justified, and this is confirmed by numerous 
comparisons of the computational and experimental data. 

Note that in solving within the framework of the mixing-length theory, turbulent flows 
with inflection in the velocity profiles, it is usually necessary to make special assumptions 
of one sort or another regarding the length of the mixing path (see e.g. /6,7/j and to intro- 
duce new empirical constants. The undoubted advantage of this method of solving such flows 
lies in its uniformity, i.e. in preserving for all problems the same initial formulas and the 
same empirical constants derived from the Ni@radse experiments /l/. 

The points at which the curve of the tangential stresses changes its sign are, according 
to the theory, angular points for the velocity profiles. Profiles containing angular points 
are not new in the theory of turbulence. For example, the mixing-length theory in its class- 
ical form, when applied to flow in a straight pipe, leads to velocity profiles which are some- 
what peaked on the pipe axis. It should be stressed that a tendency to such peaking can be 
observed on all experimental profiles obtained for the flows in pipes by Nikuradze and others. 
The peaking can be observed on the graph itself, and was called, in the hydraulics at the be- 
ginning of this century, a "D'Arcy cap". We recall that the so-called first Prandtl Theory 
for streams and wakes leads to pointed profiles. All this is also present in the generalized 
Karman theory (2.1). In particular, the theory of selfsimilar plane boundary layers follow- 
ing from it leads to the appearance of corner points at the free boundary of the layer, i.e. 
the averaged velocity does not couple smoothly with the velocity of the potential flow /l/. 
Perusal of the voluminous atlas of experimental data on velocity profiles in boundary layers 
given in the second volume of the proceedings of the Stanford conference /8/ confirms this. 

Fig.1 Fig.2 

Now is the time to mention that in discussing the paper by A.M. Kolmogorov /a/, L.D. 
Landau showed that "when dealing with the eguations of turbulent motion, we must always take 
into account the fact that the presence of vorticity in the turbulent stream is restricted 
by the finite size of the space: qualitatively correct equations must lead to such a distribu- 
tion of the vortices". The Landau c&dition means basically that a sharp boundary separating 
the regions of potential and turbulent flows is necessary. This is satisfied, in particular, 
by Prandtl's first theory of streams and wakes, but not by his second theory. The general- 

ized Karman theory (2.1) always leads to a sharp separation of the regions of potential and 

turbulent flows, thus satisfying the Landau postulate. 
In fact that the proposed theory leads to the appearance of corner points on the veloc- 

ity profiles at points where the tangential stresses change sign, conforms with the theory. 
As we know, the fact that the tangential Reynolds stresses become zero does not imply that 
there is no variation in the velocity. Turbulent motion occurs at such points with sufficient 

intensity and has an alernating character. This means that the points cannot always be de- 

tected experimentally and the pattern often appears diffuse /lo/. However, a large volume of 

experimental data /8/ exists which indicate that the corner points on the velocity profiles 
of the turbulent flows are an objective fact. This is clearly seen in Fig.1, which shows the 

results of experiments id 2100 (boundary layer flow: U-is the velocity at the outer boundary 

of the boundary layer, and 6 denotes its thickness). 
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4, Formula (2.1) for turbulent viscosity contains the wJh?CUhK viscosity v in explicit 

form. This sometimes gives rise to objections, since the formulas for V~ obtained earlier 

aid not usually contain the molecular viscosity, arguing that trubulent mixing away from the 
wall (without a viscous sublayer) must obey the laws of flow.of a perfect fluid. Neverthe- 
less, the experimental determination of vt with help of the formula 

-o/d> = v,ad&! (4.1) 

where (u'v') and &lay. are measured, shows that vz depends essentially on the Reynolds number 

and hence on v. 
In the classical theory of turbulence the contradiction is overcome by introducing the 

concept of a viscous sublayer the thickness of which is given by the empirical formula 

v*hJv = ii (4.2) 

where U. is the dynamic velocity. The condition that the velocity is continuous on the bound- 
ary between the viscous sublayer and the region of turbulent flow, implies that the turbulent 
viscosity depends, after all, in an indirect manner, on the molecular viscosity. 

In the generalized Karman theory (n#t)itbecaaes possible to satisfy the condition of 
adhesion of fluid at the boundary without resorting to the concept of a viscous sublayer. 
This is equivalent to neglecting the thickness of this sublayer. Rut then we must include v 
in the formula for the turbulent viscosityt which is indeed done in (2.11, We shall use the 
classical problem of turbulent flow in pipes to show that such an approach is admissible and 
yields correct resultsr by considering and comparing various formulas. 

Using the mixing-length theory and putting l=OAr,ff-qrt). where n==&,,r, is the pipe 
radius, we can obtain 

v: = s = 0.4(i- tl)$'" (4.3) 

while (2.1) with n=l,x,=0.16 (which corresponds to the Kaxman theory), yields the expression 

V; = 0.8(1 - q"')'1 (4.4) 

The same formula (2.1) but with II =J/,,x,, =0.53(111), gives 

(4.5) 

Nikuradze determined the function v,*(n) independently of any hypotheses regarding the 
value of the mixing length, using the formula 

(4.61 

where the pressure gradient g and duldy were determined experimentally. 
Pig.2 shows curves of v~*= f(i--n)constructed using (4.3) (curve 1) and (4.4) (curve 2); 

curves 3 and 4 correspond to the Reynolds number Re = 3.10" ma Re=W respectively. We 
see that tbe'classical formulas (4.3) and. (4.4) yield substantially higher values of VT, and 
(4.4), following from the Rarman theory, gives slightly better results.. But even the latter 
exceeds the experimental values by 50% atRe==3*1pand by 27% at Re- i(r. The results obtain- 
ed for vl* from the proposed formula (3.3) are higher than the experimental data by 38% at 
Re -13.10' and lower by 13% at Re=!o(. It should be noted however that the values n = =I‘, 
xn =0.53 of the constants are intended only to be used for calculations falling within the 
"Bfasius" range of Reynolds numbers, and at Re -100 Eq.(4.5) yields a curve for v+', which 
is practically identical with the experimental curve and with that given by the formula 

vz* = (0,ar - O.OS@ - O.OSn‘) $* (4.71 

which is obtained when the empirical Prandtl formula based on the Nikuradse experiments is 
used for the mixing length. The dependence of the constants n and xn 
(2.11 on the Reynolds numbers, 

used in the theory 
has already been discussed and pairs of their values for 

various ranges of Re are given in /l/. 

5. The above comparison is fairly typical and shows that molecular viscosity v1 can ba 
brought in indirectly and yields results no worse than those obtained by introducing Y into 
yf through the boundary condition , as has been done up to now. 
for solving turbulent flows is increased considerably. 

At the same time, the scope 
The proposed theory was successfully 

applied in /l-S/ to various problems mentioned in Sect.1. 
The results obtained in 1978 for Couette flow with (and without) a pressure gradient are 

of interest, 
quadratures. 

since the problem can be solved within the framework of the proposed theory in 
Its solutions obtained within the framework of traditional representations /6, 

7,111 were derived by choosing'specially the formula for the mixing path and for the physical 
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con5tantrr appmring in it, i-a, the formula was taiLored to,tho problem in question. Mean- 
while, using the gumralised 'Irrlrrmcn theory (2-l) the problrap can be solved in closed form 
wkhout altering the initisl fomula and the constants appmxing in it. 

A no sc~iution to the brtme~ problesr /K also did not require any changes in (2.1), 

nor in tha values of the ccm8tmts. Its trampired that a ttansverse magnetic field affects 
the flow onfy Fn tams of it8 averaged characeexfstics. The laws governing turbulent mixing 
remain the saun as for non-elsctrica;lly cosduottng liquids. Until n5w the theory of turbul- 
ent magnetol%@rSc flowa was regarded as M independent branch of the theory of tuaul- 
es*, rapuirinq a revirion of the fanau.Ia8 for ttfrbttlant viscosity (Pee e.g. /12/l. 

Special attention must be -given to the results obtained for curvilinear flows. Since 
the tiar, of Pran&.L*s work /13/ it ha8 been knom that the computations must takeintoaccount 
the Sutrrtantial iniluenoe of centrifugal forms on turbulent mixing. This problem however 
ha5 not beentackled theoretically. The following generatization of the theory (2.1) to em- 
bxaca c~milinsar flows dencxibed in a polar coordinate system, was proposed in /3/: 

+QRi)T" (5.1) 

ima ei+ is the angular velocttyof the liquid, f @Ii) is a correction coefficient aflmw- 

in9 for the effect Of CextxifUgal force8 on the turbulent mixing, and R1 fs the Ri$mrchm 
gradient nmtmr known in the theory of statified turbulent flaws, and used in the fom generaf- 
ised to CurvilQmar Rradshaw flaws /IQ/. The analogy between statified and curvilinear 
turbulent flows was noted in /lS/. 

AndyZing the large amount of experimntal data on turbUlent flows between rotating 
cylinders, we obtained in /3/ the expression 

f (Ri) = 1 - i,iRi'" (5.2) 

valid for the Blaaius range of Re for which nor%, n,,=O.!% The expression for the correction 
factor f(W) was then succes5fulEy used to compute the flow in a curved channel /4/. Formulas 
wete obtained for the coefficient of resistance and for the coordinate of the maxfanm of the 

velocity profile, which were fn good agreement with exparixentaf data. Formulas (5.11 and 
(5.2) open up the prospects of comptating plane turbulent boundaxy layers on t3rvilfnea.r bound- 

ari55, and increase the accuracy of the determination of their points of separation. 
We note that fn caaputing curvilinear turbi%ent flows the number of expirical constants 

is increarred by tm. Thus we have, in addition to n-%,x,, -0.53, another two constants in 
(WE):@-f.f, a=% This means that the theory has reached its critical level of four empirical 
constants, beyond which every theory transforms, according to Landau, into a process of ad- 
justing the fomulas to fit the experimental data. 

6. Formula (2.1) was also used to cuupute plane boUndary layers with positiveasdnega- 
tive pressure gradient8 /I/, Th5 results obtained were checked against all 32 series of ex- 
periments with boundary layers drsscxibed in /8/. The outcom of this exercise is described 
in detail in /l/, so we shall. just mention here the most isgzortant results of these tests. 

The best agr mt with experiment (with regard to both velocity profiles and coeffie- 

kents of resistance1 was obtained for the following values of the physical constants n = */a. 
50 =O.M and not for 5=%,x,==0.53, as might have been axpected bearing in mind that it was 
the latter set of the values of the constants that gave best results in the rfmaining special 

cases. 
This can obviously be expfained not only by the fact that the boundary layers studied in 

/l/ were characterized by the relatively low Reynolds nuabsrs, but also by the fact that ex- 
periments involving boundary layers with positive pressure gradients are usually prone to 

ermr because of the difficulty of maintain&g the plane character of the flow. This is 
particularly trUe for layers which have become detached. The best results were obtained when 
computing the equilibrium boundary Layers for which the theoxy gave excellent agreement with 

experimnt, at the saane time confirming the experimentaLLy fouhd non-uniqueness of the eo1u- 

tion of the problem. using these results, we have succeeded in generalizing the Buri equa- 
t&n by converting it to a Riccati-type equation with the coefficient determined not empiric- 

ally, but from the theory (2.1). 

7. ALL the problems Usted here ape those of the theory of boundary fayer turbU&enCe. 
The uise of formula (2.1) to solve free turbulence problem5 is hot fnadmiseible, butaproblem 
arises here, still not fully solved, namely, what condition at the free boundary should re- 
place the Karman condition &I&5-*. which holds only an the walls. In this case an addit- 
ional condition must be formulated {despite speoifyfng the velocity at the free boundary), 
since (2.1) contains not only the first, but also the second derivative of the velocity, and 
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this increases the order of the differential equation of flow by one (as compared with the 
version of the mixing-length theory in Prandtl form). At first glance it appears that the 

relation eu/dp=Q, which presupposesasmooth variation in the velocity at the boundary between 
the potential and turbulent flow can ba used as the additional condition. However, the 
structure of formulas (2.1) does not permit this. Me recall that the theory is constructed 

in a manner which results in a sharp separation between potential and turbulent flow, and 
this is precisely its merit. 

In spite of the lack of clarity noted above, the computations of streams and wakes using 

the generalized Rarman theory have not been without SUCCeSS. In every special case however, 

various possible assumptions of one sort or another have had to be made (e.g. Specifying a 
point of inflection on the velocity profile and assuming that this point coincides with the 
maximum of the curve tangential stresses). A remote wake was computed /la/ in this spirit, 

and it was shown there,in particular, that theturbulentviscosity curve has a form intermediate 
between the curves produced using the first and second Prandtl theory, which agreed better 
with experiment. 

Moreover, it was found possible, while carrying out the computations for n-i fcorrespond- 

ing to the Rarman theory), to compute the Schlichting constant Q from the given value of the 
Karman constant x, =0.16, thus proving that the physical constants used in the theory of bound- 
ary layer turbulence can also be used to solve the free turbulent flows. The most important 
aspect of this is, that up till now the constants of boundary layer turbulence and free turbul- 
ence were regarded as independent. If n=SId and n='l% are the "working" values of the 
exponent in (2.1) for computing boundary layer flows, then for free turbulence n = i, x, = 046 

(thus passing to the classical form of the Karman equation), or a=0,9-0.95. should be used. 
This follows from the fact that the energy dissipation is much slower in free turbulent flows 
than in boundary layer flows, and the dependence of the turbulent viscosity on the molecular 
viscosity must be less. However, the fact that it can be taken into account at all (within 
the framework of the generalized Karman theory) is of some interest. 

8. The generalized Karman theory described above belongs, by virtue of its applicabil- 
ity, to the "coarse*' versions of the theory of turbulence. It limits itself to considering 
only steady-state flow, collecting only the most important features and neglecting certain 
second-order phenomena. Its undoubted shortcoming lies in the fact that solving any particular 
problem with its help requires a priori discussion of the rangeofReynoldsnumberswithinwhich 
the solution can be used, even though these ranges are usually fairly wide. 

Its merit is its relative simplicity, which produces results easy to interpret for such 
complex problems as the flow between two rotating cylinders , plane equilibrium boundary layers, 
flows in curved channels, and Hartman flow. Most of the work on turbulence dealing with 
specific types of flow (including those mentioned above) is characterized by a large degree 
of arbitrariness in choosing the formulas for the mixing length and the constants appearing 
in them. None of this occurs in the proposed method which at all times keeps'the same pairs 
of constants, namely n =%,x,,= 0,53,and n='/,. x,=0,56 for flows with relatively low Reynolds 
numbers. The same values of the empirical constants are retained in the case of curvilinear 
flows, but are supplemented by another two constants (introduced to account for a new physical 
factor, e.g. the centrifugal forces which substantially affect turbulent mixing). 

Thus the formulas for turbulent viscosity (2.1) embrace a wide class of problems of the 
theory of turbulence, while maintaining stable empirical constants and a moderate number of 
them. This must be regarded as a reflection of the fact that the theory in question has a 
deep physical basis and will, undoubtedly in time be derived from more general relations and 
ideas. Even now we can see that the basis of the theory is the hypothesis of selfs&nilar,i.ty 
Of turbulent flows in a form conforming to the fact that the relation between the coefficients 
of resistance and Reynolds numbers, in the form of Blasius' formula, holds true for many 
steady-state turbulent flows in ranges of values of the Reynolds numbers of practical interest. 
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ON THE CRITICS FOR THE U#SET OF ~TIO~ 
OF TWO COLLINEAR DlSlOCATION DISCONTINUITIES* 

A.S. BYEOVTSEV 

The conditions under which the motion _beqins of two collinear dislocational 
Volterra-type discontinuities, initally specified on a single straight line 
in a homogeneously isotropic elastic medium, is studied. The theory of 
invariant T.-integ?zals /l/ is used to write the criteria defining the 
beginning and direction of motion of either end of the discontinuity. The 
limiting stresses are determined and the subsequent behaviour of the whole 
system is investigated. 

Let two generalized dislocational discontinuities of unequal length and constant sudden 
change in displacement b&q, hr)==& be distributed along a aingfe straight line.We intro- 
duce the rectangular Cartesian coordinate system in such & manner that the Or-axis coincides 
with the line on which the discontinuitfes lie, and denote hy ---I,, --I,,&l, the abscissas 
of the ends of the discontinuity. The problem is assumed to be plane. We will determine the 
critical loads which mL1st be applied to the body in order for at least one end of the dis- 
continuity to begin to move. The problem in question is an analog of the problem discussed in- 
/2/ (on the equilibrium of two collinear cracks) for dislocation discontinuities. 

Let US denote by %,%I~ the components of the displacement vector along the +#,I axes 
respectively, and by u~,s,,,,.s~~. a,. s~,~o, the stress tensor components. We also denote the 
set of internal points of tha segments (-_b -13 and (h, l3of the Oz-axis by t, and the set of 
points of the Or-axis outside these segments by Af. The boundary conditions of the problem 
have the form 

(1) 

Problem (1) can be written in the form of the sum of the symmetric, skew-symmetric and 
anti-plane problems, by expanding the vector b&,br, bd in three terms 4 lb,, 0, 0). 4 (0, 4. Oh bS 
(O,O,b& The boundary conditions will have the form (2), (3) and (4) for the skew-symmetric, 
symmetric and antiplane problems respectively 

u, * ‘/,bt, a, = 0 OR L; u, - 0, w - 0 OXI hf 
12) 

~y~~/.b,.a~~OonL;~~O,ff;,=OOn~ (3) 


